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Abstract. Description of thermal regimes in flowing wa-
ters is key to understanding physical processes, enhanc-
ing predictive abilities, and improving bioassessments. Spa-
tially and temporally sparse data sets, especially in logisti-
cally challenging mountain environments, have limited stud-
ies on thermal regimes, but inexpensive sensors coupled with
crowd-sourced data collection efforts provide efficient means
of developing large data sets for robust analyses. Here, ther-
mal regimes are assessed using annual monitoring records
compiled from several natural resource agencies in the north-
western United States that spanned a 5-year period (2011–
2015) at 226 sites across several contiguous montane river
networks. Regimes were summarized with 28 metrics and
principal component analysis (PCA) was used to determine
those metrics which best explained thermal variation on a
reduced set of orthogonal axes. Four principal components
(PC) accounted for 93.4 % of the variation in the temper-
ature metrics, with the first PC (49 % of variance) associ-
ated with metrics that represented magnitude and variabil-
ity and the second PC (29 % of variance) associated with
metrics representing the length and intensity of the winter
season. Another variant of PCA, T-mode analysis, was ap-
plied to daily temperature values and revealed two distinct
phases of spatial variability – a homogeneous phase during
winter when daily temperatures at all sites were < 3 ◦C and
a heterogeneous phase throughout the year’s remainder when
variation among sites was more pronounced. Phase transi-
tions occurred in March and November, and coincided with
the abatement and onset of subzero air temperatures across
the study area. S-mode PCA was conducted on the same ma-
trix of daily temperature values after transposition and in-
dicated that two PCs accounted for 98 % of the temporal
variation among sites. The first S-mode PC was responsible

for 96.7 % of that variance and correlated with air tempera-
ture variation (r = 0.92), whereas the second PC accounted
for 1.3 % of residual variance and was correlated with dis-
charge (r = 0.84). Thermal regimes in these mountain river
networks were relatively simple and responded coherently
to external forcing factors, so sparse monitoring arrays and
small sets of summary metrics may be adequate for their de-
scription. PCA provided a computationally efficient means
of extracting key information elements from the temperature
data set used here and could be applied broadly to facilitate
comparisons among more diverse stream types and develop
classification schemes for thermal regimes.

1 Introduction

Temperatures of flowing waters control many physicochemi-
cal processes (Likens and Likens, 1977; Gordon et al., 1991;
Ducharne, 2008) and affect the ecology of aquatic organ-
isms and communities (Isaak et al., 2017b; Neuheimer and
Taggart, 2007; Woodward et al., 2010). Knowledge of ther-
mal regimes, characterized as the annual sequence of tem-
perature conditions specific to locations within river net-
works (Caissie, 2006), is key to understanding natural con-
ditions and diagnosing anthropogenic impairments. Semi-
nal work by Poff and colleagues (Poff and Ward, 1989;
Poff et al., 1997) created a robust framework for describ-
ing flow regimes based on metric descriptions of magnitude,
frequency, timing, duration, and variability that are largely
transferrable to thermal regimes (Poole et al., 2004; Olden
and Naiman, 2010). Recent studies have contributed useful
derivations of temperature metrics (Arismendi et al., 2013;
Chu et al., 2010; Rivers-Moore et al., 2013; Steel et al., 2016)
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or classification schemes based on a small number of pre-
selected metrics (Maheu et al., 2016), but the limited avail-
ability of annual temperature records (Orr et al., 2015; Isaak
et al., 2018a) has slowed broad development and adoption of
thermal regime concepts. Data inadequacies are often com-
pounded for montane riverscapes that are difficult to sample
(Brown and Hannah, 2008; Isaak et al., 2013), a shortfall that
needs to be overcome given the importance of these areas
as climate refugia for cold-water biodiversity (Brown et al.,
2009; Isaak et al., 2016b; Quaglietta et al., 2018) and as the
focus of costly regional conservation strategies (Roni et al.,
2002; Rieman et al., 2015).

Despite existing limitations, the importance of tempera-
ture to stream biota is well recognized and inculcated to reg-
ulatory standards based on metrics used within threshold-
based approaches (Poole et al., 2004; Todd et al., 2008).
Most often, those metrics represent some aspect of condi-
tions during warm summer months when temperature sen-
sitive species or life stages are thought to be most vulnera-
ble (Ice et al., 2004; McCullough, 2010), which contributes
to the preponderance of short monitoring records spanning
only these months (Isaak et al., 2017a). However, thermally
mediated ecological processes occur throughout the year
(Neuheimer and Taggart, 2007; Olden and Naiman, 2010),
so adequate understanding requires broader characterization
of thermal conditions from annual data sets. While that may
bring additional complexity, most warm season metrics are
strongly correlated and therefore redundant (Isaak and Hu-
bert, 2001; Dunham et al., 2005; Steel et al., 2016). If re-
dundancy is also the norm among a broader array of annual
temperature metrics, then multivariate data reduction tech-
niques might be useful for identifying a few key aspects of
thermal regimes.

Supporting that idea, Rivers-Moore et al. (2013) used
principal component analysis (PCA) to describe covaria-
tion among 39 temperature metrics calculated for 82 South
African stream sites and found that two PCs accounted for
75 % of the total variation among metrics. Similarly in the
field of hydrology, Olden and Poff (2003) examined 171 flow
metrics calculated from 420 gage sites across the United
States (U.S.) and found that two to four PCs accounted for
76 %–97 % of variation in the data set. In addition to metric-
based PCA that is commonly used in the hydrological sci-
ences, several other PCA variants are standard analytical
tools in the field of climatology and may be relevant for char-
acterizing the dynamics of thermal regimes (Richman, 1986;
Demsar et al., 2013). Most notably, PCA can be done on re-
peated measurements of a single variable to identify common
spatial or temporal behavior among monitoring stations. In
the climatology literature, for example, empirical orthogonal
function analysis (S-mode PCA in the taxonomy of Rich-
man, 1986) is used to determine which sites covary tempo-
rally as a means of developing regionalization schemes for
precipitation, air temperatures, or wind speeds (Piechota et
al., 1997; Jiménez et al., 2008; Martins et al., 2012). If com-

mon temporal patterns are identified, it suggests potential re-
dundancy in the monitoring network and the information can
be used to refine future sampling designs. The closely allied
T-mode PCA identifies dominant spatial patterns in data sets
and the times when these phases occur (Richman, 1986; Gal-
lacher et al., 2017). A single dominant spatial pattern sug-
gests the spatial distribution of a variable is temporally con-
sistent, whereas more than one spatial phase suggests change
points and different states.

The advent of inexpensive sensors, combined with regula-
tory requirements and concerns about climate change, have
led to the recent expansion in temperature monitoring net-
works for rivers and streams (Isaak et al., 2010; Rivers-
Moore et al., 2013; Hilderbrand et al., 2014; Luce et al.,
2014b; Trumbo et al., 2014; Hannah and Garner, 2015; Jack-
son et al., 2016; Molinero et al., 2016; Daigle et al., 2016;
Mauger et al., 2016; Steel et al., 2016). What was once a data
dearth is becoming a deluge and opportunities exist to study
thermal regimes with robust data sets. Here, we use annual
temperature records compiled from several natural resource
agencies for 226 monitoring sites in a mountainous landscape
to conduct an initial assessment of thermal regimes. We limit
the geographic scope of our effort to several adjacent river
basins in the northwestern U.S. that are geologically and to-
pographically similar but which have particularly dense mon-
itoring networks to maximize analytical flexibility. Our ob-
jectives were to (1) provide a basic description of the annual
thermal characteristics in mountain rivers and streams be-
cause these are rare within the literature, (2) develop metrics
to describe thermal regime characteristics based on magni-
tude, frequency, timing, duration, and variability, and (3) ex-
plore spatiotemporal variation among those metrics and tem-
perature dynamics in relation to basin morphology and hy-
droclimatic conditions to better discern the principal compo-
nents of thermal regimes and their regulating factors.

2 Study area

The study area encompasses 79 500 km2 of mountainous, to-
pographically complex terrain that spans a broad elevation
range of 200–3600 m at a latitude of 45◦ N in the north-
western United States (Fig. 1). Climate is characterized by
cold, wet winters with moderate to heavy snow accumula-
tions at high elevations and hot, dry summers. Hydrographs
are typical of snowmelt runoff systems, with high flows dur-
ing spring and early summer and low flows during late sum-
mer, fall, and winter (Fig. 2). Vegetation is dominated by
conifer forests except at low elevations and south facing as-
pects where grasses and shrubs predominate. Wildfires are
common within the landscape and burned 8 % of the area
from 2011 to 2015 (Morgan et al., 2014). Parent geology
consists mostly of resistant granites of the Idaho Batholith
and a smaller easterly portion of intrusive volcanics (Bond
and Wood, 1978; Meyer et al., 2001). Both geologies are
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Figure 1. Locations of 226 monitoring sites overlaid on an August
stream temperature scenario for the 29 600 km network in the study
area. Stars denote where air temperature and stream discharge data
were obtained from a low-elevation site (294 m, northern station)
and a high-elevation site (1850 m, southern station).

heavily dissected and stream valleys are V-shaped except
for some alpine valleys at the highest elevations that were
once glaciated. Human population densities are low except
along wider segments of river valleys where fertile flood-
plains and easy access to water accommodate small amounts
of agriculture and ranching. Most of the study area is pub-
licly owned (81 %) and federally administered by the United
States National Forest Service and Bureau of Land Manage-
ment for a variety of land-use, recreational, and conserva-
tion purposes. Unpaved road networks have been developed
in some drainages for timber harvest, but many drainages
are protected in large wilderness areas with minimal anthro-
pogenic effects or roads (Swanson, 2015).

River networks and temperature data set

Rivers and streams within the study area were delin-
eated using the 1 : 100000-scale National Hydrography
Dataset (NHD; http://www.horizon-systems.com/NHDPlus/
index.php, last access: 2 December 2018; McKay et al.,
2012), which was attributed with mean annual flow val-

Figure 2. Annual cycle of mean daily water temperatures (a), air
temperatures (b), and discharge (c) at a high-elevation site and a
low-elevation site during 2 contrasting climate years. Discharge val-
ues at the high-elevation site are multiplied by 10 for better visibil-
ity.

ues from data at the Western U.S. Stream Flow Met-
rics website (http://www.fs.fed.us/rm/boise/AWAE/projects/
modeled_stream_flow_metrics.shtml, last access: 2 Decem-
ber 2018; Wenger et al., 2010). To highlight the perennial
subset of the network where temperature monitoring oc-
curred, reaches with annual flows less than 0.03 m3 s−1 were
removed from the network, as were reaches with channel
slopes > 15 %, and those coded as intermittent in the NHD
(Fcode= 46003). Filtering reduced the original network ex-
tent from 58 000 to 29 600 km with streams flowing at eleva-
tions of 221–3105 m. To visualize thermal heterogeneity in
the network, a scenario representing mean August tempera-
tures for a baseline climate period of 1993–2011 was down-
loaded from the Northwestern Stream Temperature website
(NorWeST: https://www.fs.fed.us/rm/boise/AWAE/projects/
NorWeST.html, last access: 2 December 2018; Isaak et al.,
2016a) and linked to the NHD reaches (Fig. 1). Several large
rivers drain the area in a generally westerly direction, the
largest of which is the Salmon River with a mean annual dis-
charge of 315 m3 s−1 and a basin that comprised 44 % of the
study area. Six large dams and reservoirs are in downstream
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Table 1. Descriptive statistics for spatial attributes of the study network and 226 monitoring sites with annual temperature data in the
northwestern United States.

Network reaches Mean Median SD Minimum Maximum

Elevation (m) 1493 1533 536 221 3105
Drainage area (km2) 915 17.7 4359 0.005 34 865
Mean annual flow (m3 s−1) 9.73 0.229 43.2 0.0253 379
Reach slope (mm−1) 0.0584 0.0519 0.0429 0 0.150

Monitoring sites

Elevation (m) 1392 1407 464 280 2369
Drainage area (km2) 687 47.3 3011 2.18 34 865
Mean annual flow (m3 s−1) 7.37 0.692 26.4 0.0253 281
Reach slope (mm−1) 0.0389 0.0273 0.0403 0 0.150

portions of the network (three in the Boise River basin, two
in the Payette River basin, and one in the Clearwater River
basin), but these affect thermal conditions in less than 300 km
of river and no temperature data were used from these sec-
tions. Spatial attributes and environmental characteristics of
the study area network are summarized in Table 1.

To obtain a water temperature data set for analysis, we in-
tersected the filtered network with the NorWeST database of
daily temperature summaries (Chandler et al., 2016) and ex-
tracted data for sites that had mean daily temperature val-
ues on at least 70 % of the days from 1 December 2010 to
30 November 2015. We started the thermal year on 1 De-
cember because temperatures usually reach their annual lows
by this date and the 3-month period thereafter constituted
a logical winter season (i.e., December, January, February).
Subsequent 3-month periods were considered to be spring
(March, April, May), summer (June, July, August), and fall
(September, October, November) seasons. NorWeST tem-
perature records were supplemented with additional data
solicited from hydrologists and fisheries biologists em-
ployed by the Idaho Department of Fish and Game and the
U.S. Forest Service, and we also downloaded data from on-
line databases maintained by the Columbia Habitat Mon-
itoring Program (https://www.champmonitoring.org/Home/
Index, last access: 2 December 2018) and the NOAA North-
west Fisheries Science Center (https://www.webapps.nwfsc.
noaa.gov/WaterQuality/, last access: 2 December 2018). Ge-
ographic gaps in monitoring were identified using geospa-
tial analysis (e.g., Jackson et al., 2016) and additional sen-
sors were strategically deployed where needed (Isaak et al.,
2010, 2013). Data from the different sources were recorded
at a variety of sub-daily intervals, so records were summa-
rized to mean daily temperatures for standardization. Data
were collected using different sensor models (TidbiT, Stow-
away, and Pendant models from Onset Computer Corpora-
tion, Pocasset, Massachusetts, USA; Temp101a model from
MadgeTech, Warner, New Hampshire, USA), which had
measurement accuracies of ±0.2 to ±0.5 ◦C and resolutions

of 0.02 to 0.14 ◦C based on manufacturer specifications and
calibration tests we performed. Sensors were deployed us-
ing underwater epoxy or steel cables for connection to large
boulders and other immobile channel structures and were
shielded from direct sunlight (Isaak et al., 2013; Stamp et al.,
2014). Temperature records were subject to standard quality
assurance–quality control measures as described elsewhere
(Chandler et al., 2016).

The stream temperature data set consisted of records from
226 sites across a range of elevations, stream sizes, and
reach slopes (Fig. 1; Table 1). Although we set the mini-
mum threshold for record completeness at 70 % during the 5-
year period, the average completeness of records was higher
at 88 %. Missing daily values were imputed using the Miss-
MDA package (Missing Values with Multivariate Data Anal-
ysis; Josse and Husson, 2016) in R (R Development Core
Team, 2014) because temporal covariation among proximate
stream temperature sites is usually strong. That was con-
firmed in our data set by the high correlations between ob-
served daily temperatures and predictions from the imputa-
tion technique, which ranged from r = 0.98 to 0.99. All tem-
perature records at the 226 sites were complete after impu-
tation and consisted of 1826 mean daily temperatures from
1 December 2010 to 30 November 2015. Climatological vari-
ation during the same period was described using discharge
data downloaded from the National Water Information Sys-
tem database (https://waterdata.usgs.gov/usa/nwis/nwis, last
access: 2 December 2018) for a high-elevation gage site at
1850 m and a low-elevation gage site at 294 m and air tem-
perature data from monitoring stations in the Cooperative
Observer Network (https://www.ncdc.noaa.gov/data-access,
last access: 2 December 2018) that were near the gage sites
(Fig. 1).
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Table 2. Temperature metrics used to describe thermal regimes of mountain rivers and streams.

Category Thermal metric Definition

Magnitude M1. Mean annual temperature Average of mean daily temperatures during a year
M2. Mean winter temperature Average of mean daily temperatures during December, January, and

February
M3. Mean spring temperature Average of mean daily temperatures during March, April, and May
M4. Mean summer temperature Average of mean daily temperatures during June, July, and August
M5. Mean August temperature Average of mean daily temperatures during August
M6. Mean fall temperature Average of mean daily temperatures during September, October, and

November
M7. Minimum daily temperature Lowest mean daily temperature during a year
M8. Minimum weekly average temperature Lowest 7-day running average of mean daily temperature during a year
M9. Maximum daily temperature Highest mean daily temperature during a year
M10. Maximum weekly average temperature Highest 7-day running average of mean daily temperature during a year
M11. Annual degree days Cumulative total of degree days during a year (1 ◦C for 24 h= 1◦ day)

Variability V1. Annual standard deviation Standard deviation of mean daily temperature during a year
V2. Winter standard deviation Standard deviation of mean daily temperature during winter months
V3. Spring standard deviation Standard deviation of mean daily temperature during spring months
V4. Summer standard deviation Standard deviation of mean daily temperature during summer months
V5. Fall standard deviation Standard deviation of mean daily temperature during fall months
V6. Range in extreme daily temperatures Difference between minimum and maximum mean daily temperatures

during a year (M9 minus M7)
V7. Range in extreme weekly temperatures Difference between minimum and maximum weekly average tempera-

tures during a year (M10 minus M8)

Frequency F1. Frequency of hot days Number of days with mean daily temperatures > 20 ◦C
F2. Frequency of cold days Number of days with mean daily temperatures < 2 ◦C

Timing T1. Date of 5 % of degree days Number of days from 1 December until 5 % of degree days are accumu-
lated

T2. Date of 25 % of degree days Number of days from 1 December until 25 % of degree days are accu-
mulated

T3. Date of 50 % of degree days Number of days from 1 December until 50 % of degree days are accu-
mulated

T4. Date of 75 % of degree days Number of days from 1 December until 75 % of degree days are accu-
mulated

T5. Date of 95 % of degree days Number of days from 1 December until 95 % of degree days are accu-
mulated

Duration D1. Growing season length Number of days between the 95 % and 5 % of degree days (T5 minus
T1)

D2. Duration of hot days Longest number of consecutive days with mean daily temperatures >

20 ◦C
D3. Duration of cold days Longest number of consecutive days with mean daily temperatures <

2 ◦C

3 Data analysis

3.1 PCA of thermal metrics

Prior to calculating metrics for thermal characteristics, mean
daily temperatures for 365 days were calculated from the 5
years of data at each site to provide representative values.
Twenty-eight temperature metrics were then calculated to
describe aspects of those annual records based on five cate-
gories associated with magnitude, variability, frequency, tim-

ing, and duration (Tables 2 and 3). Metrics were similar to
those used in previous studies of thermal regimes (Arismendi
et al., 2013; Chu et al., 2010; Rivers-Moore et al., 2013;
Steel et al., 2016) and in studies assessing the effects of peak
summer temperatures on the distribution and abundance of
aquatic organisms (Dunham et al., 2003; Huff et al., 2005;
Isaak et al., 2017b). A wide range of variability occurred
among sites where mean annual temperatures ranged from
3.1 to 10.3 ◦C and annual standard deviations ranged from
2.51 to 7.40 ◦C (Table 3). Relationships among the thermal
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Table 3. Descriptive statistics for temperature metrics used to describe thermal regimes at 226 monitoring sites in mountain river networks.
Statistics were calculated from the imputed time series and mean daily values for the period 2011–2015.

Mean Median SD Minimum Maximum
(◦C) (◦C) (◦C) (◦C) (◦C)

M1. Mean annual temperature 5.36 5.10 1.44 3.10 10.34
M2. Mean winter temperature 0.75 0.63 0.60 −0.10 4.03
M3. Mean spring temperature 3.67 3.47 1.61 1.14 9.38
M4. Mean summer temperature 11.2 10.9 2.68 6.55 19.1
M5. Mean August temperature 12.5 12.1 2.78 7.78 22.5
M6. Mean fall temperature 5.71 5.50 1.53 3.04 11.5
M7. Minimum daily temperature 0.21 0.14 0.35 −0.45 2.18
M8. Minimum weekly average temperature 0.31 0.23 0.40 −0.42 2.69
M9. Maximum daily temperature 13.5 13.0 3.00 8.26 23.5
M10. Maximum weekly average temperature 13.2 12.7 2.99 7.96 23.2
M11. Annual degree days 1956 1863 527 1132 3775
V1. Annual standard deviation 4.43 4.27 1.05 2.51 7.40
V2. Winter standard deviation 0.30 0.29 0.16 0.00 0.87
V3. Spring standard deviation 1.62 1.57 0.72 0.33 5.36
V4. Summer standard deviation 1.99 1.88 0.61 0.61 4.45
V5. Fall standard deviation 3.43 3.34 0.73 2.13 6.05
V6. Range in extreme daily temperatures 13.3 12.8 3.06 7.50 23.3
V7. Range in extreme weekly temperatures 12.9 12.3 3.06 6.99 22.9
F1. Frequency of hot days 0.81 0 5.82 0 61
F2. Frequency of cold days 131 132 35.6 0 212
T1. Date of 5 % of degree days 109 113 25.5 44 168
T2. Date of 25 % of degree days 193 194 10.9 148 217
T3. Date of 50 % of degree days 237 238 5.01 215 251
T4. Date of 75 % of degree days 276 276 2.99 264 288
T5. Date of 95 % of degree days 323 323 4.78 309 340
D1. Growing season length 214 210 29.7 141 296
D2. Duration of hot days 0.691 0 5.61 0 61
D3. Duration of cold days 124 124 39.0 0 207

metrics were described by conducting PCA on a data matrix
in which columns represented the 28 metrics and rows were
the 226 monitoring sites. Linear combinations of the data
were estimated with coefficients equal to the eigenvectors
of their correlation matrix, which were the principal com-
ponents (PCs; Pearson, 1901; Sergeant et al., 2016). The first
principal component accounted for the largest possible vari-
ance in the data set and succeeding components accounted
for the largest portions of the remaining variance while being
orthogonal (i.e., uncorrelated) to the preceding components.
Correlations, or loadings, between each metric and the PCs
were also calculated to assist in subsequent interpretations.
The Princomp procedure in SAS (SAS Institute Inc., 2015)
was used to conduct the PCA. To describe geographical re-
lationships, PC scores were mapped to the 226 temperature
sites and bivariate correlations were calculated with descrip-
tors of network conditions such as elevation, reach slope, and
discharge summarized in Table 1.

3.2 PCA of daily water temperatures

To assess the consistency of spatial temperature patterns
among monitoring sites, a T-mode PCA (Richman, 1986)
was done on a data matrix of mean daily temperatures in
which the columns were the 365 days starting on 1 December
and the rows were the 226 monitoring sites. In this analysis,
the number of principal components explaining significant
variation indicates the number of distinct spatial phases that
occur throughout the year (Gallacher et al., 2017). Eigenvec-
tor loadings on the dominant PCs were plotted for each day
of the year to describe when each phase occurred, and mean
daily temperatures were mapped during these periods for vi-
sualization.

To assess temporal covariance among sites, an S-mode
PCA (Richman, 1986) was done by transposing the T-mode
data matrix so that monitoring sites were columns and the
time-ordered daily mean temperatures were rows. Because
hydroclimatic conditions among years could have affected
the results, the S-mode PCA was done not only for the 5-year
averages of daily water temperatures, but also on the disag-
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Figure 3. Linear regression trends between elevation and mean
monthly temperatures at 226 river and stream sites during 2013
(data values are not shown for clarity). Values next to the trend lines
are regression slopes and r2 values from the regressions.

gregated time series of 1826 daily values at the 226 moni-
toring sites. Concordance between the S-mode PC scores, air
temperature, and discharge was examined post hoc by plot-
ting standardized time series and calculating bivariate corre-
lations.

4 Results

Water temperatures within the study area network exhibited
spatial and temporal variation that reflected the local topogra-
phy and annual hydroclimatic cycle. The annual temperature
cycle is illustrated in Fig. 3 by the slopes of linear regres-
sions between mean monthly temperatures and elevation at
the 226 monitoring sites throughout the course of the year in
2013. No elevation trend occurred during cold winter months
when many sites had water temperatures at or near 0 ◦C and
were frequently exposed to subzero air temperatures. As tem-
peratures warmed during the spring a small elevation trend
appeared, which became most pronounced (approximately
−0.37 ◦C/100 m) during peak temperatures in the months
of July and August. Examples of inter-annual variation are
shown in Fig. 2, which contrasts the extreme conditions ob-

Figure 4. Ordination plot that shows principal component scores
of the first two axes derived from water temperature data measured
at 226 sites and summarized with 28 thermal metrics (a). (b) and
(c) show principal component scores mapped to network locations.

served in 2011 and 2015. The former year was relatively cool
with a large winter snow accumulation and spring runoff,
whereas 2015 had below average snowfall, low runoff, and
particularly warm early summer air temperatures. As a re-
sult, the median discharge date occurred 1–2 months earlier
in 2015 than in 2011 and peak water temperatures were 4–
5 ◦C warmer.

Four PCs accounted for 93.4 % of the variation in the 28
temperature metrics (Table 4). The first PC explained 49 %
of the variation and was strongly correlated with metrics
that represented magnitude and variability during most sea-
sonal periods. Correlations between PC1 scores and eleva-
tion (r =−0.59) and mean flow (r = 0.58) suggested gradi-
ents in these network characteristics were important controls
on this component of thermal regimes (Table 5). PC2 ex-
plained 29 % of thermal variation and represented the length
and intensity of the winter period, with strong loadings for
mean winter temperature, minimum temperature, and tim-
ing metrics that determined growing season length. PC3
accounted for 9.8 % of total variation and was associated
with summer temperature variability and two timing metrics,
whereas PC4 accounted for 5.6 % of thermal variance. An
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Table 4. Loadings of 28 temperature metrics on the first four principal components in a PCA of annual temperature records from mountain
river networks in the northwestern United States.

Temperature metric PC1 PC2 PC3 PC4

M1. Mean annual temperature 0.99 −0.07 −0.05 −0.03
M2. Mean winter temperature 0.26 −0.92 0.14 0.00
M3. Mean spring temperature 0.91 −0.19 −0.25 0.04
M4. Mean summer temperature 0.97 0.21 −0.06 −0.05
M5. Mean August temperature 0.95 0.22 0.16 −0.10
M6. Mean fall temperature 0.96 −0.18 0.14 −0.08
M7. Minimum daily temperature −0.02 −0.86 0.08 −0.02
M8. Minimum weekly average temperature −0.03 −0.90 0.08 0.00
M9. Maximum daily temperature 0.95 0.26 0.09 −0.08
M10. Maximum weekly average temperature 0.95 0.25 0.09 −0.07
M11. Annual degree days 0.99 −0.07 −0.05 −0.03
V1. Annual standard deviation 0.90 0.41 0.01 −0.07
V2. Winter standard deviation 0.69 −0.54 0.16 0.00
V3. Spring standard deviation 0.71 0.30 −0.55 0.04
V4. Summer standard deviation 0.42 0.32 0.78 −0.14
V5. Fall standard deviation 0.87 0.39 0.19 −0.12
V6. Range in extreme daily temperatures 0.93 0.33 0.08 −0.07
V7. Range in extreme weekly temperatures 0.93 0.33 0.08 −0.07
F1. Frequency of hot days 0.47 −0.01 0.30 0.82
F2. Frequency of cold days −0.70 0.61 0.09 0.11
T1. Date of 5 % of degree days 0.02 0.96 −0.10 0.01
T2. Date of 25 % of degree days −0.43 0.74 0.46 −0.08
T3. Date of 50 % of degree days −0.45 0.37 0.79 −0.16
T4. Date of 75 % of degree days −0.19 −0.51 0.72 −0.19
T5. Date of 95 % of degree days 0.30 −0.88 0.12 −0.09
D1. Growing season length 0.03 −0.97 0.11 −0.03
D2. Duration of hot days 0.44 −0.03 0.32 0.84
D3. Duration of cold days −0.64 0.66 0.07 0.11

Variance explained (%) 49.0 % 29.0 % 9.8 % 5.6 %
Cumulative variance (%) 49.0 % 78.0 % 87.8 % 93.4 %
Eigenvalue 13.73 8.12 2.74 1.56

Table 5. Correlations among stream temperature principal components and spatial attributes of 226 monitoring sites with annual data from
river networks in the northwestern United States.

Elevation Mean flow Reach slope PC1 PC2 PC3 PC4

Elevation 1
Mean flow −0.34 1
Reach slope −0.10 −0.23 1
PC1 −0.59 0.58 −0.34 1
PC2 0.27 −0.06 −0.49 0.00 1
PC3 −0.23 0.35 0.13 0.00 0.00 1
PC4 0.12 0.54 −0.02 0.00 0.00 0.00 1

ordination plot of scores from the two dominant PCs showed
a symmetrical distribution except for several sites with large
positive scores on the first axis that were from large rivers at
low elevations and had the warmest temperatures (Fig. 4a). A
map of PC1 scores indicated that the spatial pattern in magni-
tude and variability (Fig. 4b) was congruent with the network
scenario of mean August temperatures as would be expected

(Fig. 1). In fact, the correlation between PC1 scores and the
NorWeST August scenario predictions at the 226 monitoring
sites was strong at r = 0.86. The PC2 map showed several
clusters of stream sites with high scores scattered throughout
the study area (Fig. 4c), which tended to be associated with
lower reach slopes (Table 5).
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Figure 5. T-mode PCA results showing times when dominant spa-
tial phases occurred in water temperatures at 226 sites based on
principal component eigenvector loadings during an average year.

Figure 6. Thermal patterns during two periods with distinct spatial
phases based on T-mode PCA results (a). Day 50 occurs in mid-
January and represents the homogenous winter period (b), whereas
day 250 occurs in late July and represents the heterogeneous pe-
riod (c).

In the T-mode analysis, the first two PCs explained 88 % of
the total variation in mean daily temperatures. A plot of the
daily eigenvector loadings indicated that one distinct spatial
phase occurred in the winter and a second phase spanned the
year’s remainder (Fig. 5). Phase transitions occurred around

Figure 7. S-mode PCA results showing principal component scores
that describe temporal patterns in mean daily water temperatures for
226 stream sites during 5 years (a). Average daily air temperatures
and discharge values from two monitoring stations are aligned with
the principal component scores for comparative purposes. A plot of
PC1 versus PC2 reveals that variation along the two axes differs by
monthly and seasonal periods (b).

days 100 and 350, which closely aligned with the abate-
ment and onset of subzero air temperatures in the study area
(Fig. 2). Figure 6 illustrates the spatial patterns characteristic
of the two phases by mapping mean daily water temperatures
at the monitoring sites on days 50 and 250, which occurred in
mid-January and late July, respectively. Temperatures during
the winter phase were spatially homogenous and exhibited a
narrow range from 0 to 2.5 ◦C, whereas the non-winter phase
was heterogeneous and had a broader temperature range from
7.6 to 23.4 ◦C.

In the S-mode analysis, the first PC accounted for 98 % of
the variation when applied to the average year of 365 daily
temperatures at the 226 monitoring sites. Nearly an identical
result was obtained when the analysis was repeated on the
disaggregated time series of 1826 daily temperatures, as PC1
then explained 96.7 % of total variation (Fig. 7a). The corre-
lation between PC1 scores and mean daily air temperatures
in the disaggregated series was strong (r = 0.92), suggesting
that water temperatures were responding coherently to vari-
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Figure 8. Plot of S-mode eigenvector loadings from 226 stream
sites on PC1 and PC2. Note that the range of variation in the PC1
loadings is small relative to the loadings along PC2, which indi-
cates that most of the differences among sites were associated with
the second principal component.

Figure 9. Annual water temperature timing patterns reconstructed
from S-mode PCs using the mean eigenvector loading value for PC1
and ±0.16 for PC2 to demonstrate the effects of strong negative
loadings and positive loadings on PC2.

ability in air temperatures across the study area. A second
PC accounted for 1.3 % of water temperature variation in the
disaggregated series and was strongly correlated with varia-
tion in mean daily discharge (r = 0.84). A plot of PC1 versus
PC2 indicated that variation along these axes corresponded to
monthly and seasonal periods (Fig. 7b). As was expected, lit-
tle variation occurred during the cold winter months, but dur-
ing spring and early summer, variation was observed along
both axes as air temperatures warmed and snowmelt runoff
created a large discharge pulse. Once discharge returned to
baseflow conditions in late summer, variability along PC1
was the primary signal until air temperatures cooled signifi-
cantly in late fall and the homothermous period began.

Although PC1 and PC2 are linearly uncorrelated, the loop
structure of Fig. 7b indicates there was some mutual informa-
tion and that one driver of temperature variation was out of

Figure 10. Relationship between the S-mode eigenvector loadings
from PC2 and the annual unit-area runoff in basins upstream of 226
water temperature sites.

phase with the other. Examining this more closely by plotting
the site loading values on each component from the S-mode
analysis, we see little variability among the loadings for PC1
relative to the much larger range of loading values for PC2
(Fig. 8). This confirms that PC1 represented the common be-
havior among all stream sites and that deviations in timing
of water temperature increases and decreases were dictated
by PC2. As a result, when annual temperature signals were
reconstructed for two sites from the PCs based on the mean
loading value for PC1 and±0.16 for PC2 to represent strong
negative and positive loadings, the expected timing shift was
apparent (Fig. 9). Notably, the site with the −0.16 PC2 load-
ing had a later, sharper rise in water temperature that peaked
in late summer approximately 1 month after the site with the
positive loading. The correspondence of PC2 to stream dis-
charge in Fig. 7a suggests the timing shift could be related
to runoff patterns. And indeed, the annual unit-area runoff
for the basins associated with the 226 sites was a strong pre-
dictor of the PC2 loadings in a linear regression (r2

= 0.51;
Fig. 10). Site elevation provides some indication of rainfall–
snowfall fraction that may help explain timing shifts, but
this covariate added little predictive capacity beyond annual
runoff when examined across all sites (r2

= 0.54). However,
when sites with basin sizes less than 50 km2 were examined
(because site elevation relates more strongly to mean basin
elevation in smaller basins), elevation accounted for a large
increase in the explainable variance of PC2 loadings beyond
that attributable to annual runoff (r2

= 0.69). Although oro-
graphic enhancement of precipitation is evident in the study
area, there is enough difference in circulation patterns across
the north–south extent of the area that elevation and an-
nual runoff were only weakly correlated in the small basins
(r =−0.2), so the elevation effect was largely independent
of annual precipitation. As a result, both factors appeared
to contribute to the PC2 loadings such that either wetter or
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colder locations had more negative loadings and later rises in
water temperatures.

5 Discussion

5.1 Thermal regimes in mountain settings

Thermal regimes in the mountain river networks we stud-
ied were simple and responded relatively coherently to cli-
matic variability across a geomorphically consistent area
with few reservoirs. Strong seasonal patterns in water tem-
peratures characteristic of temperate latitudes were apparent
in response to the primary signal set by the annual air tem-
perature cycle and accompanying changes in solar radiation.
Not surprisingly given the pronounced elevational gradients
in the study landscape, the dominant regime aspect repre-
sented by PC1 in the metric-based PCA was associated with
magnitude. Less expected was that many of the variability
metrics also loaded heavily on the first PC because varia-
tion has been treated as a distinct element of thermal regimes
(e.g., Steel et al., 2012; Kovach et al., 2018). The concur-
rence of magnitude and variability metrics probably also re-
lates to elevation and changes in the importance of ground-
water buffering, which both cools streams and dampens diur-
nal and seasonal variations (Caissie and Luce, 2017). For ex-
ample, the coldest streams at the highest elevations are usu-
ally strongly buffered by groundwater inputs derived from
large annual snowpacks in mountain environments and often
show limited thermal variability (Luce et al., 2014b; Isaak
et al., 2016b). Downstream from the headwaters, the propor-
tional inputs of groundwater decrease and streams are more
coupled to climatic variability even as their average tempera-
tures increase due to solar gains over longer flow distances
(Caissie, 2006). In contrast to the metrics associated with
PC1, metrics that described the winter period and the ex-
tent of the growing season largely defined PC2. This “winter”
PC is probably common to stream thermal regimes in moun-
tain landscapes where subzero air temperatures are frequent
and result in prolonged periods with water temperatures near
0 ◦C. The orthogonal nature of PC1 and PC2 suggests that
streams with otherwise similar magnitude and variance struc-
tures will sometimes differ substantially with regards to their
winter and growing seasons – a distinction that could have
important implications for biological communities or stream
physicochemical processes.

Our results also suggest that important local nuances in
water temperature dynamics like the differences in timing of
spring warming and peak temperatures may emerge from the
interactions among annual climate cycles, basin geomorphol-
ogy, and hydrology. Because precipitation, air temperatures,
snowpack, runoff volume, and runoff timing are all evolv-
ing in response to climate change in mountain environments
across the study region (Mote et al., 2005; Luce et al., 2013)
and globally (Stewart, 2009), better understanding of these

connections is needed. In particular, more insight into the re-
lationship of water temperatures with annual unit-area runoff
and whether the underlying mechanisms relate to changes in
snowpack accumulation (Luce et al., 2014a; Lute and Luce,
2017), snowmelt timing and rate (Musselman et al., 2017),
the volume of water stored in groundwater (e.g., Tague et al.,
2007), or the outcomes of extreme low flows (e.g., Kormos et
al., 2016; Luce and Holden, 2009) could lead to better predic-
tions about water temperatures and the evolution of thermal
regimes in response to expected changes in air temperatures
and precipitation.

5.2 Implications for modeling and monitoring

Water temperature models are often developed for use in eco-
logical assessments and to understand how habitat degra-
dation or restoration efforts may affect thermal regimes
(Benyahya et al., 2007; Gallice et al., 2015; Dugdale et al.,
2017). Our results, like several previous studies that have
compared multiple temperature metrics (Isaak and Hubert,
2001; Rivers-Moore et al., 2013; Steel et al., 2016), confirm
that numerous metrics are strongly correlated and provide re-
dundant information. The specific choice of a metric, there-
fore, may not be critical as long as it represents an impor-
tant aspect of a thermal regime and is suited to the goals
of a study. Metrics associated with temperature magnitude
and variability, which have been the focus of most model-
ing efforts, are good choices because they represent signifi-
cant portions of the information about thermal regimes and
have been shown on many occasions to be important deter-
minants of ecological attributes such as species distributions
and abundance or physical processes in streams and rivers
(Isaak et al., 2017b; Webb et al., 2008). Our preferred met-
rics in previous research have been mean August or mean
summer temperatures because the data records for their cal-
culation are typically available at the largest number of sites
in mountain environments, which maximizes sample sizes
and minimizes the distances over which interpolations are
made when developing and applying network-scale tempera-
ture models (e.g., Detenbeck et al., 2016; Isaak et al., 2017a).
Metrics based on longer-term means rather than short-term
daily or weekly maxima are also more stable and easier to
predict (Isaak et al., 2010; Turschwell et al., 2016), although
a focus on the latter metrics is often mandated within reg-
ulatory environments and may negate these considerations
(Todd et al., 2008; McCullough, 2010).

Comparatively little effort has gone towards modeling
temperature metrics associated with growing season length
or the dates of spring and winter season onset, despite the
significant information these metrics provide about thermal
regimes and their relevance to the phenology and life histo-
ries of organisms that constitute aquatic communities (Huryn
and Wallace, 2000; Neuheimer and Taggart, 2007). These as-
pects of thermal regimes, as well as magnitude and variabil-
ity characteristics, are also likely to be evolving in response
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to climate change, so new models are needed to provide fore-
casting abilities about changes later this century. Rather than
focusing on individual metrics, researchers could also instead
use PCA to efficiently summarize multiple temperature met-
rics and then model the eigenvector loadings that define one
or more of the principal components. This approach would
maximize the amount of thermal information represented by
a response metric, but would yield results that were more
ambiguous to interpret.

The growth of new stream and river temperature monitor-
ing and data collection activities has been remarkable in re-
cent years. Although optimization of those efforts ultimately
depends on local considerations, some general guidelines
emerge from this work that may be applicable to other ar-
eas. For example, the coherent behavior we observed among
temperatures at many sites suggests that a limited number
of monitoring stations will often be sufficient to represent
the temporal dynamics of thermal regimes. Those stations
would need to be spread geographically and along major en-
vironmental gradients and replicated to mitigate against sen-
sor losses, but 20–30 stations might prove sufficient at scales
comparable to our study area. Given low sensor costs and the
availability of standardized data collection protocols (Isaak et
al., 2013; Stamp et al., 2014), monitoring arrays could also be
crowd-sourced effectively if site locations were coordinated
and chosen strategically using geospatial analyses to describe
and stratify networks for sample allocation (Jackson et al.,
2016). Monitoring networks might also be supplemented by
incorporating data from sites established for other purposes
such as documenting thermal responses to habitat restoration
efforts (Nichols and Ketcheson, 2013) or disturbances asso-
ciated with land management, wildfires, or livestock graz-
ing (Mahlum et al., 2011; Nusslé et al., 2015). In fact, those
factors motivated collection of many of the data sets com-
piled for this analysis, although supplementation with addi-
tional sites was needed to ensure adequate coverage within
the study area.

If one of the goals of temperature data collection efforts is
to develop accurate prediction maps that show spatial varia-
tion in one or more thermal metrics (e.g., Isaak et al., 2017a;
Steel et al., 2016), monitoring sites may need to be estab-
lished more densely than the temporal considerations dis-
cussed above otherwise suggest. Spatial autocorrelation in
temperature metric values is minimal in mountain river net-
works beyond distances of 10–100 km (Isaak et al., 2010;
Zimmerman and Ver Hoef, 2017), so this level of sensor
spacing would be required to generate the most accurate
maps. Given the extent of many river networks, that could
translate into a large number of sites, but most of these could
be monitored for short periods while temporal dynamics
were represented by a subset of long-term sites because tem-
poral covariance among sites would be strong. Costs associ-
ated with numerous sensor deployments could be prohibitive,
so aggregation of existing data sets from multiple natural re-
source agencies into a centralized database often becomes

an attractive option. Moreover, if those central databases are
made publicly accessible, professionals from the contribut-
ing agencies may begin to coordinate data collection activ-
ities more consistently and effectively across larger areas
(e.g., Isaak et al., 2018b).

As new data collection and database development efforts
proceed, it is commonly the case that temperature records
have inconsistent period lengths or missing values. Usually
it is desirable to have complete records for analysis, so miss-
ing values are sometime imputed based on the correlations
between two monitoring site records that strongly covary
(e.g., Rivers-Moore et al., 2013). However, the process can
be tedious if required at more than a few sites, so an effi-
cient improvement is offered by the imputation technique de-
scribed by Josse and Husson (2012) that is easily used in the
MissMDA software package (Josse and Husson, 2016) for
the R statistical program (R Development Core Team, 2014).
This technique examines and uses correlations among mul-
tiple site records simultaneously to estimate missing values
by first applying standard PCA to the incomplete data set
where missing values are replaced with the respective record
mean. Data are then reconstructed from the PCs, and the ini-
tial analysis step is repeated but with missing values replaced
using estimates from the reconstructed data. The process is
repeated until convergence, and the missing values in the
original data records are ultimately replaced with estimates
from the last PCA reconstruction (Josse and Husson, 2012).
Care should be taken against overreliance on the technique to
impute particularly sparse records, but the MissMDA pack-
age provides a useful tool for addressing gaps when work-
ing with large temperature data sets or time series of other
measurements common to hydrology such as gage discharge
records (e.g., Isaak et al., 2018a).

6 Conclusions

Our analysis of thermal regimes follows previous work that
has proven fundamental to advancing the understanding of
hydrologic regimes (Poff et al., 1997; Olden and Poff, 2003)
but also adds novel applications of PCA variants from the
field of climatology that hold utility for stream temperature
research and monitoring design. Insights from those applica-
tions indicate that thermal conditions in the mountain river
networks studied here were strongly coherent through time,
exhibited two distinct spatial phases, could be adequately de-
scribed by a few principal components or allied metrics, and
reflected landscape geomorphology and hydroclimatic con-
ditions. A logical next step involves application of PCA tech-
niques to larger stream and river temperature data sets at re-
gional, continental, or intercontinental scales to encompass
greater heterogeneity and discern the geographic domains
over which distinct thermal regimes are operable. Across suf-
ficiently diverse landscapes, we might expect to find classes
of thermal regimes that, at a minimum, mimicked previ-
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ously described classes of hydrologic regimes (e.g., rainfall,
snowmelt, spring groundwater, and regulated), but possible
divergences from, or additions to, these categories would be
useful to ascertain. In a national-scale assessment for the
United States, Maheu et al. (2016) classified stream thermal
regimes into six categories, but the 135 temperature stations
that supported the analysis were limited in comparison to a
drainage network comprised of millions of kilometers. Sub-
sequent iterations on that effort could document additional,
undescribed thermal classes and might also prove beneficial
by developing detailed maps of classification schemes to aid
in assessments of ecological conditions or anthropogenic ef-
fects on stream thermal regimes. As research on the topic of
thermal regimes matures, syntheses with flow regime con-
cepts and databases could also be sought to more fully de-
scribe the hydroclimatic conditions of flowing waters.
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